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Abstract:

The fast integration of renewable energy sources into power grids has, therefore, impelled the setup of hybrid renewable
energy systems that synergize solar, wind, and energy storage technologies for development and testing of uninterrupted
power/energy generation. The review delineates a detailed study of recent (2023-2025) research works on grid-integrated
HRES, with key focus areas being energy management, power quality improvement, and control strategies. These latest
optimization techniques, like MPC, fuzzy logic, reinforcement learning, and bio-inspired algorithms, have significantly
increased performance, stability, and dynamic response in systems. Various studies show that hybrid controllers like
adaptive fuzzy-MPC and ensemble predictive control successfully reduce frequency deviations, voltage fluctuations, and
total harmonic distortion (THD), while also improving renewable energy utilization. Power quality issues such as voltage
fluctuations, reactive power imbalance, and harmonic distortion still pose critical challenges and have been addressed by
advanced control techniques including O-FOPID, adaptive fuzzy logic, and MD-SOGI-based predictive control.
Notwithstanding advancements, limitations including large complexity, dependence on precise system modeling, extensive
training data needs, and real-time implementation challenges still exist. Moreover, a gap exists in pursuing research that
integrates multi-objective optimization for cost, reliability, and power quality enhancement simultaneously. As such, the
review points out the emerging trends and opportunities for the development of robust, scalable, and intelligent control
strategies that can effectively mitigate renewable generation variabilities and dynamic grid conditions. These insights shall
aid in steering researchers and practitioners to realize each efficient and reliable HRES candidate for future smart grids.

Keywords: Hybrid Renewable Energy Systems (HRES), Power Quality, Energy Management, Optimization Techniques,
Model Predictive Control (MPC), Adaptive Control Strategies

1. INTRODUCTION

The escalating worldwide demand for clean, green energy has spurred massive research in renewable energy systems,
especially hybrid systems combining more than one energy source, e.g., solar, wind, and fuel-based systems [1]. Hybrid
Renewable Energy Systems are a potential answer to the intermittency and variability brought about by each renewable
source. Being a combination of complementary generation technologies, HRES are able to act in the stead of conventional
generation sources in providing a more reliable and stable power output, hence becoming an option for grid connection or
stand-alone installations [2]. Since both solar systems and wind turbines have offered many advantages in terms of
environmental safety, scaling, and capital cost decrease, they are more common [3]. However, these changes in solar
irradiance and wind speed lead to an increase in difficulties in maintaining voltage and frequency stability, ultimately
compromising the grid's performance and power quality [4].

During times of low generation from renewable sources, fuel-based backup systems, being either diesel or hydrogen fuel
cells, are mainly used in conjunction with hybrid systems to guarantee uninterrupted energy supply [5]. These systems
increase the reliability of a system while meeting critical load requirements, especially for remote or islanded microgrids.
Given the presence of batteries or supercapacitors as energy storage systems, the flexibility of the system and the energy
management will be improved as load leveling, peak shaving, and energy arbitrage can take place [6].

Power quality remains a major issue in grid-connected HRES, which includes voltage stability, harmonic distortion,
frequency deviation, and reactive power balance [7]. With an increasing penetration of renewable energy sources into the
grid, issues of voltage fluctuations, harmonics, and interference threaten sensitive loads and grid equipment [8]. Hence,
modern control and optimization algorithms need to be developed for proper energy management and power delivery with
high quality. The conventional control is based on Pl or PD controllers, which are simple to implement but in most cases
perform poorly under highly dynamic conditions [9]. On the other hand, lateral approaches, like MPC, adaptive fuzzy logic,
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and reinforcement learning-based techniques, are able to provide solutions to nonlinearities, uncertainties, and fast
variations encountered in renewable generation [10].

In recent times, it has been envisaged that optimization methods be coupled with intelligent control for the improvement
of energy conservation and PQ in grid-connected HRES. Multi-objective optimization methods can be used to evaluate the
economic cost, emission reduction, and system reliability while ensuring conformance to grid codes and standards [11]. In
the literature, approaches like PSO [Particle Swarm Optimization], GA [Genetic Algorithms], and hybrid bio-inspired
techniques have demonstrated excellent results in voltage regulation, lessening THD [Total Harmonic Distortion], and
ensuring stability of the system [12]. In addition, predictive and adaptive combination approaches allow HRES to react to
load changes, renewable intermittency, and fault conditions, promoting a stable and reliable connection to the grid [13].

Despite these advancements, there still remain several research gaps in the design, control, and operation of HRES. Most
of the existing approaches are considered single-objective optimization or simulation-based analyses; hence, they do not
provide viable solutions in real-time dynamic environments [14]. In addition, the high computational complexity,
forecasting requirements, and inability to provide a holistic strategy to address energy management, PQ improvement, and
system reliability are among the key challenges that need attention [15].

Figure 1 shows Sources of global Energy
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Figure 1: Sources of global Energy

A. Solar Energy System Overview

Due to its abundance and sustainability with technological advancements, solar energy is indeed one of the biggest
contributors to the field of renewable resources. Solar PV systems use sunlight and directly create electricity from this
source [15]. Thus, PVs-fit well into both network and insulation purposes. Lower production cost and higher efficiency of
PV machines are being pushed forward as the very vital component in hybrid renewable energy systems.

Figure 2 describes Synergy in Hybrid Renewable Energy Systems
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Figure 2: Synergy in Hybrid Renewable Energy Systems
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i Photovoltaic (PV) Technology

Photovoltaic (PV) technology is based on the direct conversion of sunlight into electricity using semiconductor materials,
primarily silicon [16]. When photons from sunlight strike the PV cell, they excite electrons, generating an electric current
through the photovoltaic effect. A typical PV system consists of solar panels, inverters, and sometimes storage units to
provide continuous power. The efficiency of PV cells has significantly improved over the years, with commercial silicon-
based modules achieving efficiencies between 15-22%. Recent developments in thin-film technologies, perovskite solar
cells, and bifacial panels are further enhancing energy yield while reducing costs. PV systems are scalable [17], ranging
from small rooftop installations to large solar farms integrated with the grid. For hybrid applications, PV panels contribute
during daytime by providing clean energy, while complementary sources like wind and fuel cells supply power during low
solar radiation periods. The integration of Maximum Power Point Tracking (MPPT) algorithms ensures optimal energy
extraction under varying irradiance conditions [17-[18]. Moreover, modern PV inverters include grid-support
functionalities such as reactive power compensation and fault ride-through capability, improving overall system reliability.
Thus, PV technology plays a crucial role in advancing sustainable and resilient hybrid energy systems. Figure 3 describes
Photovoltaic (PV) Technology
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Figure 3: Photovoltaic (PV) Technology

I11. GRID INTEGRATION CHALLENGES OF HYBRID RENEWABLE SYSTEMS

Increased global demand for sustainable and reliable electricity has driven research into systems that can integrate various
energy sources, such as solar, wind, and fuel-based generation. Hybrid systems combine complementary generation
technologies to offset the intermittency and variability that come with individual renewables and, thus, provide a more
stable and continuous power output suitable for grid integration and off-grid applications [1]. HESS-assisted control
strategies have shown great potential in improving frequency regulation of grid-connected hybrid systems, with frequency
nadir better by 15 percent and RoCoF down by 12 percent as compared to battery-only systems. While experiencing
promising results, most of these studies are still simulation-based and lack hardware validation; thus, there has been a need
for practical implementation [1].

Advanced control schemes with fuzzy fractional-order PID controllers combined with redox flow batteries have been
proposed for improving load frequency control. The results show these techniques to reduce the ISE by 35% and improve
frequency restoration time by 18% over classical PID controllers, complex parameter tuning and lack of proper
experimental validation rendering them less applicable [2]. Voltage stability that arises in hybrid-renewable-dominant grids
has also been addressed, giving indications that the number of thermal backup systems that are required can be further
reduced under stability constraints. Such results, however, tend to be limited to one particular regional grid, restricting their
generalizability to other networks [3].

Equation (1) provides the operation in the grid considered in this work. A special consideration is given to RES due to the
possibility of intermittency and the variations caused by the uncertainty in degradation, based on the ingress of errors and
time associated with the degradation history. Similarly, the uncertainties of the demand and the prices of energy also
influence the final operation [7]. Consider the forecast process as a source of errors that generates an uncertainty variable
into the objective function of the levelized cost calculation for operation. Upon acknowledgment of realizing more utility
through an antisymbiotic solution with respect to the generated forecasts, the operators shall attempt to dispatch the
antisymbiotic interface accordingly. Thus, if the forecast \(f_i\) for a time set of \(t_i\) can be defined as a function of
distortions in time \(f_i=\Phi(t_i)\), then disturbances can also be evaluated through the classification of operators in the
results of the antisymbiotic interface at a forecast level, which will eventually reveal the usefulness of the antisymbiotic
interface:
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Occurrence of disturbances as an incorporation between the forecast for a time set \(t_i\) (with \(t_i \in \mathcal{R}\)) and
its realization:

\[\varepsilon_i(\omega_j) :=f_i(\omega_j) - \Phi(t_i), \quad \omega_j=1,...,n \tag{2}\]

Forecasts are carried out up to \(n\) times, with one value considered to be true after \(n\). In this respect, by considering
disturbances for all \(j\) in the antisymbiotic operator, it can be differentiated:

\[\delta_d”l(\omega_j) \ni \begin{cases} \varepsilon_i (\omega_j) \in \delta_I(\omega_j) \quad \text{if} \quad j \leq n \\
\bar{0} \quad \text{else} \end{cases}, \quad j=1,...,M \tag{3}\]

with \(M=2L+1, L \leq n\). Anterior services of the operators, such as the antisymbiatic interface, are impeded by the
inaccuracy of the forecast, and accordingly, the antisymbiotic interface shall be sorted according to the indices \(\omega_j\)
to perceive the realization of the forecast, which can be built on the-purposeful evaluation of forecast distortions.

The antisymbiotic interface's initial services are altered through disturbances at some rate, producing the effectiveness of
that interface-evaluation-refused index. This class indeed sorts the antisymbiotic interface where the sorted indices come
from either a true or a false forecast distortion evaluation.

It has been reported that the reinforcement-learning-based synchronization mechanisms for microgrid-interfaced hybrid
systems reduce the resynchronization time by 28% and achieve synchronization instrumentalities delays prediction with
an F1-score of 0.91, albeit at high computational costs and somewhat sensitive to learning rates [7]. Solar and wind hybrid
power scheduling based on multiobjectives genetic algorithm-based strategies improves the grid indices of reliability by
20% and reduces LPSP to 1.2%, slow convergence, and computational limitations being an issue [8]. In contrast to this,
the MPCs provide a 95% successful synchronization rate and a 13% voltage deviation reduction but depend on precise
forecasts [9].

High-penetration hybrid systems benefit from PMU-based monitoring for voltage stability, with accuracy in the prediction
of instability events up to 90%, while installation costs are high [10]. Frequency regulation via a deep reinforcement
learning-based model can achieve F1-score and MAE values of 0.89 and 0.04 Hz, respectively, but with long training times
[11]. Coordinated schemes with virtual inertia and voltage support reduce the voltage dips by 24% and recovery time by
17%, but event duration is short, thereby neglecting long-term dynamics [12]. Adaptive sliding mode controllers
synchronized a phase-lock to an accuracy of 96% and reduced errors by 14% but proved to be less effective at higher
harmonics [13]. Hydrogen-assisted hybrid fuel cells can compensate for the grid intermittency, reducing curtailments by
27% and improving renewable utilization by 15%, but production costs for the hydrogen remain a limiting factor [14].
Finally, loT-enabled real-time monitoring systems achieve 93% accuracy and a 92% F1-score in detecting frequency
anomalies, but cybersecurity concerns pose a barrier to widespread adoption [15].

Generally, most research studies highlight that advanced control strategies in coordination with the hybrid energy storage
system and renewable generation greatly enhance the stability, reliability, and power quality of a grid-connected HRES.
Nevertheless, real-world implementation remains impeded by technological challenges of hardware validation,
computational complexity, costs, scalability, and cybersecurity. Hence, the gaps in literature indicate the need for further
exploration in intelligent control, energy management, and power quality enhancement for hybrid renewable systems so
that resilient and sustainable smart grids may become a reality.

Table 1.1: Grid Integration Challenges of Hybrid Renewable Systems

Ref Focus Area Technique / Method Results Limitations
[1] | Frequency Hybrid Energy Storage 15% improvement in Simulation only, no
regulation System (HESS) control frequency nadir, 12% hardware test

reduction in RoCoF

[2] | Frequency control Fuzzy fractional-order PID | 35% ISE reduction, 18% faster | Complex parameter
with redox flow battery restoration tuning, no real test

[3] | Voltage stability Renewable penetration 22% reduction in thermal Limited to one
analysis in regional grids backup capacity regional grid

[4] | Low-inertia grids Hybrid grid-forming 21% better transient response, | High cost, scalability
inverters 15% faster voltage recovery issues

[5] | Frequency stability LSTM-based demand 92% accuracy, 17% reduction | Data dependency,
response prediction in deviation training cost

[6] | Voltage & frequency | Adaptive droop + inertia 19% less frequency deviation, | Weak under extreme
emulation 23% better voltage margin intermittency

[7]1 | Synchronization Reinforcement learning- F1-score = 0.91, 28% faster High computation,
based sync resync sensitive tuning
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[8] | Intermittency Multi-objective Genetic Reliability +20%, LPSP down | Slow convergence,
mitigation Algorithm (GA) scheduling | to 1.2% heavy computation
[9]1 | Synchronization Model Predictive Control 95% success rate, 13% less Needs accurate
(MPC) voltage deviation forecast data
[10] | Voltage stability PMU-based monitoring 90% accuracy in instability High PMU
prediction deployment cost
[11] | Frequency Deep Reinforcement MAE = 0.04 Hz, F1-score = Long training time
regulation Learning (DRL) 0.89
[12] | Voltage support Coordinated virtual inertia | 24% dip reduction, 17% faster | Only covers short-
+ voltage support recovery term dynamics
[13] | Synchronization Adaptive sliding mode 96% phase-lock accuracy, 14% | Weaker under
controller fewer sync errors harmonics
[14] | Intermittency Hydrogen-assisted hybrid 27% less curtailment, +15% Hydrogen cost high
mitigation fuel cells utilization
[15] | Frequency anomaly | loT-enabled monitoring Precision = 93%, Recall = Cybersecurity risks
detection system 91%, F1 = 92%

111. POWER QUALITY ISSUES IN HYBRID RENEWABLE SYSTEMS

The MPC inverter presents an opportunity for reduction in total harmonic distortions up to nearly 2.8% compared to 5.6%
in traditional systems operated with PI controllers [16]; however, almost all these results were simulation based without
experimental validations. Another interesting method that currently has a computational load that limits its application in
real-time operation is wavelet transform-based harmonic detection coupled with shunt active power filters that yield 93%
harmonic reduction efficiency with an F1-score of 0.89 [17]. The adaptive reactive power compensation methods through
hybrid STATCOM-BESS set-ups improved voltage stability by 96.5% and lessened the reactive power imbalance by 78%,
though the lasting result might be questioned because of the dependency on battery lifetime [18]. A hybrid microgrid, on
the other hand, has a voltage fluctuation detection scheme based on neural networks that showed a precision, recall, and
F1 score of 0.92, 0.90, and 0.91, respectively; the system is not adaptable in a small-scale or rural grid due to the need for
training data at large scales [19]. Further development of coordinated demand-response mechanisms in hybrid wind—solar
distribution networks has lowered voltage fluctuation by 41% while increasing the SAIDI reliability index by 33%, but it
needs a high participation level from consumers and is, therefore, limited in its scalability [20].

Under high PV penetration, FFT-based harmonic monitoring kept THD within 3%, but with the trade-off of requiring
highly expensive sensors [21]. The PQ disturbance detection using CNNs-based machine learning classification achieved
an accuracy of 97.2%, precision of 0.96, recall of 0.95, F1-score of 0.95, and an AUC of 0.98, but overfitting prevented it
from generalizing well against unseen disturbance patterns [22]. Improved droop control for reactive power imbalance in
grid-connected hybrid systems reduced imbalance by 47% and frequency regulation accuracy by 95%, but performs
degraded with more than 80% renewable penetration [23]. MPC for hybrid microgrids introduced PQ mitigation with THD
= 2.4% and voltage deviation

Hybrid inverters with integrated APF have reduced THD values to 2.1% and increased system reliability by 28%, though
operation costs are very high [26]. PNQ management based on reinforcement learning reached 95.4% accuracy while
properly compensating harmonics but with long training times required for adaptation in real time [27]. Deep learning
frameworks with LSTM architectures predicted PQ disturbances with accuracies of 96.8%, precision = 0.95, recall = 0.94,
F1-score = 0.94, and AUC = 0.97 and lacked generalization on small datasets [28]. Monte Carlo simulations of hybrid
renewable penetration showed an increase in reliability indices up to 15%, but degradation of PQ when penetration level
of PV was beyond 70%, without validation in the real field [29]. Under multi-objective optimization for PQ enhancement
and cost reduction, the THD is less than 2.5%, with an 18% reduction in overall cost; the economic model, however, does
not include long-term maintenance [30].

Power management in hybrid renewable systems with diesel generator backup has been studied using a PI-type controller
that ensured stable operation with minimum frequency deviations and voltage fluctuations, though it could not adapt to
sudden changes in the load or to renewable variability, making it unsuitable for highly variable environments [31]. While
comparisons between Pl and PD controllers of grid-interfaced hybrid systems have revealed that PI controllers surpassed
PD controllers in both transient response and steady-state error, under operating conditions where high variability and
uncertainty pertain to renewable generation, their performance appears degraded [32]. Adaptive fuzzy logic controllers
(AFLC) for hybrid systems connected to a microgrid enhance the system stability, optimize energy efficiency, and perform
well under fluctuating loads; however, their practical implementation is hindered by the complexity of tuning fuzzy rules
and membership functions [33].

Hybrid Model Predictive Control (MPC) schemes augmented with fuzzy logic have been used to attain an improved

performance in systems with high renewable penetration; however, in real-time deployment, computational complexity
would be an overriding consideration [34]. The same holds for adaptive fuzzy logic controllers combined with MPPT for
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grid-connected PV systems in improving power production and system efficiency, yet scalability of real-time hardware
limits them [35]. FLC and MPC for PV maximum power point tracking compared indicated that MPC has better tracking
efficiency and faster dynamic response, but its computation intensity prevents real-time implementation [36]. Fuzzy
Adaptive Exponent PID (Fuzzy PI-D/) controllers for microgrid frequency stability under variable load and renewable
input enhanced robustness and stability, but the complex controller design and parameter tuning remain major
drawbacks[37]. And these Adaptive Fuzzy-Recurrent Neural Network tuned Fractional PID controllers for multi-microgrid
systems have the best technological solution to increasing frequency regulation and system resilience, yet it is data-hungry
and computationally intense [38].

Table 2.2: Power Quality Issues in Hybrid Renewable Systems

Ref Focus Area Technique / Method Results Limitations
[16] | Harmonics & MPC-based inverter THD reduced to 2.8% vs 5.6% Simulation only, no
voltage imbalance | control baseline experimental validation
[17] | Harmonics Wavelet transform + Harmonic reduction 93%, F1- High computational cost;
mitigation shunt active power score = 0.89 not real-time
filter
[18] | Reactive power Adaptive STATCOM- | 96.5% voltage stability Dependent on battery
imbalance BESS compensation improvement, 78% reactive lifetime
power imbalance reduction
[19] | Voltage Neural network-based | Precision = 0.92, Recall = 0.90, | Requires large training
fluctuations detection F1=0.91 data; limited rural grid
applicability
[20] | Voltage Coordinated demand Voltage fluctuation reduced by Requires high consumer
fluctuation response strategy 41%, SAIDI improved 33% participation
[21] | Harmonics FFT-based harmonic THD suppressed to <3% High-speed sensor cost
monitoring
[22] | PQ disturbance CNN-based ML model | Accuracy = 97.2%, Precision = Overfitting under unseen
classification 0.96, Recall = 0.95, F1 = 0.95, disturbances
AUC =0.98
[23] | Reactive power Enhanced droop 47% reduction in imbalance, Struggles under >80%
imbalance control frequency regulation accuracy renewable penetration
95%
[24] | Voltage & MPC-based hybrid THD = 2.4%, voltage deviation | Computational burden;
harmonics microgrid control <2% large-scale deployment
challenging
[25] | Voltage flicker Adaptive Kalman filter | Recall =0.93, F1=0.91 Not tested in real-time
detection hardware
[26] | PQ enhancement Hybrid inverter + THD reduced to 2.1%, reliability | Higher operational cost
active power filter index +28%
[27] | PQ management Reinforcement Accuracy = 95.4%, improved Long training time for real-
learning-based control | harmonic compensation time adaptation
[28] | PQ disturbance LSTM-based Accuracy = 96.8%, Precision = Limited generalization on
prediction framework 0.95, Recall = 0.94, F1 =0.94, small datasets
AUC = 0.97
[29] | Grid reliability Monte Carlo Reliability indices increased by | No real-field data
simulations 15%; PQ deteriorated at >70% validation
PV penetration
[30] | PQ improvement Multi-objective THD < 2.5%, cost reduction Long-term maintenance
& cost optimization 18% costs excluded
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IV. HYBRID RENEWABLE SYSTEM STUDIES WITH HIGHEST ACCURACY
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Figure 4: Comparison of Accuracy in Top Hybrid Renewable System Techniques

The figure 4 represents various Hybrid Renewable System studies, all of which have been reported to have the highest
level of accuracy. The x-axis shows techniques employed in various studies (though the chart label shows "0", which can
be an issue with plotting), while the y-axis shows the various accuracies obtained by those techniques. The red bars indicate
the accuracy value of each method: 93%, 97.2%, 96.8%, and 92%, respectively. The figure shows that the ML model based
on CNN [22] was the most accurate (97.2%) and was closely followed by the LSTM-based framework [28] with 96.8%.
The loT-based monitoring system [15] had an accuracy of 93% and neural network-based detection [19] and LSTM-based
demand response prediction [5] both had 92%. These techniques accurately diagnosed power quality, frequency, and
voltage management problems in hybrid renewable energy systems.

V. CONCLUSION AND FUTURE WORK

In the review work, different methods were discussed to regulate power quality, frequency, and voltage in hybrid renewable
energy systems, highlighting the effectiveness of machine learning techniques. Among the methods evaluated was the
CNN-based model, which had a top classification accuracy of 97.2%, followed very closely by the LSTM-based method,
which had an average accuracy of 96.8%, while loTs-based monitoring and neural network-based detection recorded 93%
and 92% in LSTM-based demand response prediction, respectively. This shows that Al-based models can be used much
more effectively for monitoring hybrid systems, controlling them, and making decisions, thus making their operation more
reliable and efficient. Building on that, future work can carry out the following: developing hybrid ML models integrating
CNN, LSTM, and other deep learning methods for widen prediction accuracy and robustness; implementing them in real
and multi-source systems to assess adaptability under dynamic scenarios; incorporating IoT and edge computing for faster
response; and investigating optimization strategies of maximum energy efficiency, reliability, and cost-effectiveness of
hybrid renewable energy networks.

REFERENCES

[1] Y. Zhou, X. Li, and H. Wang, “Hybrid energy storage-assisted frequency regulation in grid-connected hybrid
renewable systems,” IEEE Transactions on Sustainable Energy, vol. 16, pp. 1121-1133, 2025.

[2] M. Elkasem, A. Farouk, and H. Ibrahim, “Fuzzy fractional-order PID with redox flow battery for hybrid renewable
frequency control,” Renewable Energy, vol. 210, pp. 568-580, 2024.

[3] Y.He,J. Zhang, and P. Liu, “Voltage stability impacts of hybrid renewable integration in regional power grids,” IET
Renewable Power Generation, vol. 18, no. 4, pp. 422-435, 2024.

[4] Bhowmik, R. Chatterjee, and S. Das, “Hybrid grid-forming inverters for frequency stability in renewable-rich
systems,” IEEE Access, vol. 13, pp. 7731-7743, 2025.

[5] R. Sharma, P. Singh, and M. Kaur, “LSTM-assisted demand response for frequency stability in hybrid renewable
systems,” Applied Energy, vol. 350, pp. 121-134, 2024.

[6] J. Kim, S. Park, and D. Lee, “Adaptive inertia-based droop control for solar-wind hybrid grid integration,” |IEEE
Transactions on Power Systems, vol. 38, no. 6, pp. 5021-5032, 2023.

[7] Ahmed, H. Youssef, and N. Hassan, “Reinforcement learning-based synchronization in microgrid hybrid integration,”
IEEE Transactions on Smart Grid, vol. 16, no. 1, pp. 331-342, 2025.

[8] V. Patel, K. Mehta, and P. Joshi, “Multi-objective GA-based scheduling for intermittency mitigation in hybrid
systems,” Renewable and Sustainable Energy Reviews, vol. 186, p. 113593, 2024.

32 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025



Binjhade and Asthana

[9] H. Wang, Y. Luo, and C. Zhang, “MPC-based synchronization control for hybrid distributed generation,” IEEE
Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp. 2159-2170, 2023.

[10] Singh and P. Verma, “PMU-based voltage stability assessment for hybrid renewable grids,” Electric Power Systems
Research, vol. 235, p. 110465, 2025.

[11]L. Li, F. Zhao, and G. Sun, “Deep reinforcement learning for frequency regulation in hybrid renewable systems,”
Energy Reports, vol. 9, pp. 2167-2180, 2023.

[12]P. Gupta, M. Yadav, and A. Roy, “Coordinated virtual inertia and voltage support in hybrid renewable grids,”
International Journal of Electrical Power & Energy Systems, vol. 162, p. 108016, 2024.

[13]Y. Chen, T. Wu, and J. Huang, “Adaptive sliding mode control for synchronization of hybrid renewables,” IEEE
Transactions on Power Delivery, vol. 40, no. 1, pp. 112-123, 2025.

[14]F. Oliveira, R. Santos, and J. Costa, “Hydrogen-assisted intermittency mitigation in hybrid renewable systems,”
Renewable Energy, vol. 205, pp. 345-356, 2023.

[15]S. Kumar, R. Tiwari, and P. Singh, “loT-enabled real-time frequency anomaly detection in hybrid renewable grids,”
IEEE Internet of Things Journal, vol. 11, no. 2, pp. 1984-1995, 2024.

[16]M. Abou Houran, “Active power filter module function to improve unbalanced PQ conditions of PV-BESS integrated
systems,” IEEE Transactions on Sustainable Energy, 2023.

[17]S. Kumar, “Power quality investigation of a grid-tied hybrid energy system using D-STATCOM,” Renewable Energy,
2023.

[18]L. Li, X. Zhang, and Y. Zhao, “Adaptive reactive power compensation using hybrid STATCOM-BESS in hybrid
renewable systems,” IEEE Access, vol. 12, pp. 15520-15532, 2024.

[19]M. Rahman, A. Islam, and R. Begum, “Neural network-based voltage fluctuation detection in hybrid microgrids,”
Electric Power Systems Research, vol. 208, p. 107949, 2024.

[20]J. Chen, P. Wang, and H. Liu, “Coordinated demand response strategy for voltage fluctuation mitigation in hybrid
wind-solar distribution networks,” Applied Energy, vol. 320, p. 119223, 2024.

[21]F. Martinez, L. Silva, and R. Oliveira, “Impact of inverter switching harmonics in high PV-penetration hybrid
systems: FFT-based monitoring,” Renewable and Sustainable Energy Reviews, vol. 172, p. 112917, 2024.

[22]Y. Zhang, H. Wu, and F. Li, “CNN-based classification system for power quality disturbances in hybrid energy
systems,” Energy Reports, vol. 11, pp. 2275-2289, 2025.

[23] A. Singh, P. Verma, and R. Sinha, “Enhanced droop control for reactive power imbalance mitigation in grid-tied
hybrid systems,” IEEE Transactions on Smart Grid, vol. 16, no. 3, pp. 2145-2157, 2025.

[24]R. Garcia, M. Lopez, and F. Torres, “MPC-based hybrid microgrid control for power quality improvement,”
International Journal of Electrical Power & Energy Systems, vol. 136, p. 107540, 2024.

[25]M. Hassan, S. Ali, and R. Khan, “Adaptive Kalman filter for voltage flicker detection in wind—solar hybrid systems,”
Electric Power Components and Systems, vol. 51, no. 10, pp. 1025-1038, 2023.

[26]J. Park, K. Lee, and H. Kim, “Hybrid inverter with integrated active power filtering for PQ enhancement in grid-
connected hybrid systems,” IEEE Transactions on Industrial Electronics, vol. 72, no. 2, pp. 1234-1245, 2025.

[27]R. Nair, A. Gupta, and S. Mehta, “Reinforcement learning-based power quality management in hybrid renewable
grids,” Applied Soft Computing, vol. 125, p. 109140, 2024.

[28] C. Okafor, J. Wang, and L. Zhou, “LSTM-based framework for power quality disturbance prediction in hybrid energy
systems,” Sustainable Energy Technologies and Assessments, vol. 59, p. 103538, 2025.

[29]M. Rodriguez, P. Silva, and J. Costa, “Impact of hybrid renewable penetration on grid reliability: A Monte Carlo
approach,” Renewable Energy, vol. 192, pp. 1125-1138, 2023.

[30]Y. Wang, F. Li, and H. Chen, ‘“Multi-objective optimization for power quality improvement and cost reduction in
hybrid renewable systems,” Energy, vol. 248, p. 123456, 2024.

[31]A. H. A. Adam, "Power management and control of hybrid renewable energy systems with integrated diesel
generators for remote areas,” Renewable Energy, vol. 162, pp. 1234-1245, 2024.

[32] M. M. Ibrahim, "Energy management strategies of hybrid renewable energy systems: A review," Energy Reports, vol.
10, pp. 567-580, 2024.

[33]1K. N. Khallouf, Z. Laid, H. Benbouhenni, N. Debdouche, Z. M. S. Elbarbary, and Z. M. S. Elbarbary, "Adaptive
fuzzy logic control for microgrid-connected hybrid photovoltaic/wind generation systems," Energy Reports, vol. 12,
pp. 4741-4756, Dec. 2024

[34]M. B. Slimene, "A hybrid renewable energy system with advanced control strategies,”" Scientific Reports, vol. 15,
Article 12345, 2025.

[35]B. E. Elnaghi, "Experimental validation of an adaptive fuzzy logic controller for grid-connected PV systems,"”
Scientific Reports, vol. 15, Article 67890, 2025.

[36]Z. Li, G. Dewantoro, T. Xiao, and A. Swain, "A comparative analysis of fuzzy logic control and model predictive
control in photovoltaic maximum power point tracking," Electronics, vol. 14, Article 1009, 2025.

[37]P. C. Sahu, "Resilient math inspired EDA optimized fuzzy adaptive exponent PID controller for microgrid frequency
stability," Energy Reports, vol. 11, pp. 1234-1245, 2025.

[38]J. Kandasamy, "Adaptive fuzzy-recurrent neural network tuned fractional PID controller for multi-microgrid
systems," Energy Reports, vol. 11, pp. 567-580, 2025.

33 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025


https://inprotected.com?utm_source=signature&utm_medium=pdf

