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Abstract:  

The fast integration of renewable energy sources into power grids has, therefore, impelled the setup of hybrid renewable 

energy systems that synergize solar, wind, and energy storage technologies for development and testing of uninterrupted 

power/energy generation. The review delineates a detailed study of recent (2023–2025) research works on grid-integrated 

HRES, with key focus areas being energy management, power quality improvement, and control strategies. These latest 

optimization techniques, like MPC, fuzzy logic, reinforcement learning, and bio-inspired algorithms, have significantly 

increased performance, stability, and dynamic response in systems. Various studies show that hybrid controllers like 

adaptive fuzzy-MPC and ensemble predictive control successfully reduce frequency deviations, voltage fluctuations, and 

total harmonic distortion (THD), while also improving renewable energy utilization. Power quality issues such as voltage 

fluctuations, reactive power imbalance, and harmonic distortion still pose critical challenges and have been addressed by 

advanced control techniques including O-FOPID, adaptive fuzzy logic, and MD-SOGI-based predictive control. 

Notwithstanding advancements, limitations including large complexity, dependence on precise system modeling, extensive 

training data needs, and real-time implementation challenges still exist. Moreover, a gap exists in pursuing research that 

integrates multi-objective optimization for cost, reliability, and power quality enhancement simultaneously. As such, the 

review points out the emerging trends and opportunities for the development of robust, scalable, and intelligent control 

strategies that can effectively mitigate renewable generation variabilities and dynamic grid conditions. These insights shall 

aid in steering researchers and practitioners to realize each efficient and reliable HRES candidate for future smart grids. 

Keywords: Hybrid Renewable Energy Systems (HRES), Power Quality, Energy Management, Optimization Techniques, 

Model Predictive Control (MPC), Adaptive Control Strategies 

 

I. INTRODUCTION 

The escalating worldwide demand for clean, green energy has spurred massive research in renewable energy systems, 

especially hybrid systems combining more than one energy source, e.g., solar, wind, and fuel-based systems [1]. Hybrid 

Renewable Energy Systems are a potential answer to the intermittency and variability brought about by each renewable 

source. Being a combination of complementary generation technologies, HRES are able to act in the stead of conventional 

generation sources in providing a more reliable and stable power output, hence becoming an option for grid connection or 

stand-alone installations [2]. Since both solar systems and wind turbines have offered many advantages in terms of 

environmental safety, scaling, and capital cost decrease, they are more common [3]. However, these changes in solar 

irradiance and wind speed lead to an increase in difficulties in maintaining voltage and frequency stability, ultimately 

compromising the grid's performance and power quality [4]. 

 

During times of low generation from renewable sources, fuel-based backup systems, being either diesel or hydrogen fuel 

cells, are mainly used in conjunction with hybrid systems to guarantee uninterrupted energy supply [5]. These systems 

increase the reliability of a system while meeting critical load requirements, especially for remote or islanded microgrids. 

Given the presence of batteries or supercapacitors as energy storage systems, the flexibility of the system and the energy 

management will be improved as load leveling, peak shaving, and energy arbitrage can take place [6]. 

 

Power quality remains a major issue in grid-connected HRES, which includes voltage stability, harmonic distortion, 

frequency deviation, and reactive power balance [7]. With an increasing penetration of renewable energy sources into the 

grid, issues of voltage fluctuations, harmonics, and interference threaten sensitive loads and grid equipment [8]. Hence, 

modern control and optimization algorithms need to be developed for proper energy management and power delivery with 

high quality. The conventional control is based on PI or PD controllers, which are simple to implement but in most cases 

perform poorly under highly dynamic conditions [9]. On the other hand, lateral approaches, like MPC, adaptive fuzzy logic, 
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and reinforcement learning-based techniques, are able to provide solutions to nonlinearities, uncertainties, and fast 

variations encountered in renewable generation [10]. 

 

In recent times, it has been envisaged that optimization methods be coupled with intelligent control for the improvement 

of energy conservation and PQ in grid-connected HRES. Multi-objective optimization methods can be used to evaluate the 

economic cost, emission reduction, and system reliability while ensuring conformance to grid codes and standards [11]. In 

the literature, approaches like PSO [Particle Swarm Optimization], GA [Genetic Algorithms], and hybrid bio-inspired 

techniques have demonstrated excellent results in voltage regulation, lessening THD [Total Harmonic Distortion], and 

ensuring stability of the system [12]. In addition, predictive and adaptive combination approaches allow HRES to react to 

load changes, renewable intermittency, and fault conditions, promoting a stable and reliable connection to the grid [13]. 

 

Despite these advancements, there still remain several research gaps in the design, control, and operation of HRES. Most 

of the existing approaches are considered single-objective optimization or simulation-based analyses; hence, they do not 

provide viable solutions in real-time dynamic environments [14]. In addition, the high computational complexity, 

forecasting requirements, and inability to provide a holistic strategy to address energy management, PQ improvement, and 

system reliability are among the key challenges that need attention [15]. 

Figure 1 shows Sources of global Energy  

 

 
Figure 1: Sources of global Energy 

 

A. Solar Energy System Overview 

Due to its abundance and sustainability with technological advancements, solar energy is indeed one of the biggest 

contributors to the field of renewable resources. Solar PV systems use sunlight and directly create electricity from this 

source [15]. Thus, PVs-fit well into both network and insulation purposes. Lower production cost and higher efficiency of 

PV machines are being pushed forward as the very vital component in hybrid renewable energy systems. 

Figure 2 describes Synergy in Hybrid Renewable Energy Systems 

 

 
Figure 2: Synergy in Hybrid Renewable Energy Systems 
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i. Photovoltaic (PV) Technology 

Photovoltaic (PV) technology is based on the direct conversion of sunlight into electricity using semiconductor materials, 

primarily silicon [16]. When photons from sunlight strike the PV cell, they excite electrons, generating an electric current 

through the photovoltaic effect. A typical PV system consists of solar panels, inverters, and sometimes storage units to 

provide continuous power. The efficiency of PV cells has significantly improved over the years, with commercial silicon-

based modules achieving efficiencies between 15–22%. Recent developments in thin-film technologies, perovskite solar 

cells, and bifacial panels are further enhancing energy yield while reducing costs. PV systems are scalable [17], ranging 

from small rooftop installations to large solar farms integrated with the grid. For hybrid applications, PV panels contribute 

during daytime by providing clean energy, while complementary sources like wind and fuel cells supply power during low 

solar radiation periods. The integration of Maximum Power Point Tracking (MPPT) algorithms ensures optimal energy 

extraction under varying irradiance conditions [17-[18]. Moreover, modern PV inverters include grid-support 

functionalities such as reactive power compensation and fault ride-through capability, improving overall system reliability. 

Thus, PV technology plays a crucial role in advancing sustainable and resilient hybrid energy systems. Figure 3 describes 

Photovoltaic (PV) Technology 

 

 
Figure 3: Photovoltaic (PV) Technology 

II. GRID INTEGRATION CHALLENGES OF HYBRID RENEWABLE SYSTEMS 

Increased global demand for sustainable and reliable electricity has driven research into systems that can integrate various 

energy sources, such as solar, wind, and fuel-based generation. Hybrid systems combine complementary generation 

technologies to offset the intermittency and variability that come with individual renewables and, thus, provide a more 

stable and continuous power output suitable for grid integration and off-grid applications [1]. HESS-assisted control 

strategies have shown great potential in improving frequency regulation of grid-connected hybrid systems, with frequency 

nadir better by 15 percent and RoCoF down by 12 percent as compared to battery-only systems. While experiencing 

promising results, most of these studies are still simulation-based and lack hardware validation; thus, there has been a need 

for practical implementation [1]. 

 

Advanced control schemes with fuzzy fractional-order PID controllers combined with redox flow batteries have been 

proposed for improving load frequency control. The results show these techniques to reduce the ISE by 35% and improve 

frequency restoration time by 18% over classical PID controllers, complex parameter tuning and lack of proper 

experimental validation rendering them less applicable [2]. Voltage stability that arises in hybrid-renewable-dominant grids 

has also been addressed, giving indications that the number of thermal backup systems that are required can be further 

reduced under stability constraints. Such results, however, tend to be limited to one particular regional grid, restricting their 

generalizability to other networks [3]. 

 

Equation (1) provides the operation in the grid considered in this work. A special consideration is given to RES due to the 

possibility of intermittency and the variations caused by the uncertainty in degradation, based on the ingress of errors and 

time associated with the degradation history. Similarly, the uncertainties of the demand and the prices of energy also 

influence the final operation [7]. Consider the forecast process as a source of errors that generates an uncertainty variable 

into the objective function of the levelized cost calculation for operation. Upon acknowledgment of realizing more utility 

through an antisymbiotic solution with respect to the generated forecasts, the operators shall attempt to dispatch the 

antisymbiotic interface accordingly. Thus, if the forecast \(f_i\) for a time set of \(t_i\) can be defined as a function of 

distortions in time \(f_i=\Phi(t_i)\), then disturbances can also be evaluated through the classification of operators in the 

results of the antisymbiotic interface at a forecast level, which will eventually reveal the usefulness of the antisymbiotic 

interface: 
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Occurrence of disturbances as an incorporation between the forecast for a time set \(t_i\) (with \(t_i \in \mathcal{R}\)) and 

its realization: 

 

\[\varepsilon_i(\omega_j) := f_i(\omega_j) - \Phi(t_i), \quad \omega_j=1,...,n \tag{2}\] 

 

Forecasts are carried out up to \(n\) times, with one value considered to be true after \(n\). In this respect, by considering 

disturbances for all \(j\) in the antisymbiotic operator, it can be differentiated: 

 

\[\delta_d^l(\omega_j) \ni \begin{cases} \varepsilon_i (\omega_j) \in \delta_l(\omega_j) \quad \text{if} \quad j \leq n \\ 

\bar{0} \quad \text{else} \end{cases}, \quad j=1,...,M \tag{3}\] 

 

with \(M=2L+1, L \leq n\). Anterior services of the operators, such as the antisymbiotic interface, are impeded by the 

inaccuracy of the forecast, and accordingly, the antisymbiotic interface shall be sorted according to the indices \(\omega_j\) 

to perceive the realization of the forecast, which can be built on the-purposeful evaluation of forecast distortions. 

 

The antisymbiotic interface's initial services are altered through disturbances at some rate, producing the effectiveness of 

that interface-evaluation-refused index. This class indeed sorts the antisymbiotic interface where the sorted indices come 

from either a true or a false forecast distortion evaluation. 

 

It has been reported that the reinforcement-learning-based synchronization mechanisms for microgrid-interfaced hybrid 

systems reduce the resynchronization time by 28% and achieve synchronization instrumentalities delays prediction with 

an F1-score of 0.91, albeit at high computational costs and somewhat sensitive to learning rates [7]. Solar and wind hybrid 

power scheduling based on multiobjectives genetic algorithm-based strategies improves the grid indices of reliability by 

20% and reduces LPSP to 1.2%, slow convergence, and computational limitations being an issue [8]. In contrast to this, 

the MPCs provide a 95% successful synchronization rate and a 13% voltage deviation reduction but depend on precise 

forecasts [9]. 

 

High-penetration hybrid systems benefit from PMU-based monitoring for voltage stability, with accuracy in the prediction 

of instability events up to 90%, while installation costs are high [10]. Frequency regulation via a deep reinforcement 

learning-based model can achieve F1-score and MAE values of 0.89 and 0.04 Hz, respectively, but with long training times 

[11]. Coordinated schemes with virtual inertia and voltage support reduce the voltage dips by 24% and recovery time by 

17%, but event duration is short, thereby neglecting long-term dynamics [12]. Adaptive sliding mode controllers 

synchronized a phase-lock to an accuracy of 96% and reduced errors by 14% but proved to be less effective at higher 

harmonics [13]. Hydrogen-assisted hybrid fuel cells can compensate for the grid intermittency, reducing curtailments by 

27% and improving renewable utilization by 15%, but production costs for the hydrogen remain a limiting factor [14]. 

Finally, IoT-enabled real-time monitoring systems achieve 93% accuracy and a 92% F1-score in detecting frequency 

anomalies, but cybersecurity concerns pose a barrier to widespread adoption [15]. 

 

Generally, most research studies highlight that advanced control strategies in coordination with the hybrid energy storage 

system and renewable generation greatly enhance the stability, reliability, and power quality of a grid-connected HRES. 

Nevertheless, real-world implementation remains impeded by technological challenges of hardware validation, 

computational complexity, costs, scalability, and cybersecurity. Hence, the gaps in literature indicate the need for further 

exploration in intelligent control, energy management, and power quality enhancement for hybrid renewable systems so 

that resilient and sustainable smart grids may become a reality. 

 

Table 1.1: Grid Integration Challenges of Hybrid Renewable Systems 

Ref Focus Area Technique / Method Results Limitations 

[1] Frequency 

regulation 

Hybrid Energy Storage 

System (HESS) control 

15% improvement in 

frequency nadir, 12% 

reduction in RoCoF 

Simulation only, no 

hardware test 

[2] Frequency control Fuzzy fractional-order PID 

with redox flow battery 

35% ISE reduction, 18% faster 

restoration 

Complex parameter 

tuning, no real test 

[3] Voltage stability Renewable penetration 

analysis in regional grids 

22% reduction in thermal 

backup capacity 

Limited to one 

regional grid 

[4] Low-inertia grids Hybrid grid-forming 

inverters 

21% better transient response, 

15% faster voltage recovery 

High cost, scalability 

issues 

[5] Frequency stability LSTM-based demand 

response prediction 

92% accuracy, 17% reduction 

in deviation 

Data dependency, 

training cost 

[6] Voltage & frequency Adaptive droop + inertia 

emulation 

19% less frequency deviation, 

23% better voltage margin 

Weak under extreme 

intermittency 

[7] Synchronization Reinforcement learning-

based sync 

F1-score = 0.91, 28% faster 

resync 

High computation, 

sensitive tuning 
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[8] Intermittency 

mitigation 

Multi-objective Genetic 

Algorithm (GA) scheduling 

Reliability +20%, LPSP down 

to 1.2% 

Slow convergence, 

heavy computation 

[9] Synchronization Model Predictive Control 

(MPC) 

95% success rate, 13% less 

voltage deviation 

Needs accurate 

forecast data 

[10] Voltage stability PMU-based monitoring 90% accuracy in instability 

prediction 

High PMU 

deployment cost 

[11] Frequency 

regulation 

Deep Reinforcement 

Learning (DRL) 

MAE = 0.04 Hz, F1-score = 

0.89 

Long training time 

[12] Voltage support Coordinated virtual inertia 

+ voltage support 

24% dip reduction, 17% faster 

recovery 

Only covers short-

term dynamics 

[13] Synchronization Adaptive sliding mode 

controller 

96% phase-lock accuracy, 14% 

fewer sync errors 

Weaker under 

harmonics 

[14] Intermittency 

mitigation 

Hydrogen-assisted hybrid 

fuel cells 

27% less curtailment, +15% 

utilization 

Hydrogen cost high 

[15] Frequency anomaly 

detection 

IoT-enabled monitoring 

system 

Precision = 93%, Recall = 

91%, F1 = 92% 

Cybersecurity risks 

 

III. POWER QUALITY ISSUES IN HYBRID RENEWABLE SYSTEMS 

 

The MPC inverter presents an opportunity for reduction in total harmonic distortions up to nearly 2.8% compared to 5.6% 

in traditional systems operated with PI controllers [16]; however, almost all these results were simulation based without 

experimental validations. Another interesting method that currently has a computational load that limits its application in 

real-time operation is wavelet transform-based harmonic detection coupled with shunt active power filters that yield 93% 

harmonic reduction efficiency with an F1-score of 0.89 [17]. The adaptive reactive power compensation methods through 

hybrid STATCOM–BESS set-ups improved voltage stability by 96.5% and lessened the reactive power imbalance by 78%, 

though the lasting result might be questioned because of the dependency on battery lifetime [18]. A hybrid microgrid, on 

the other hand, has a voltage fluctuation detection scheme based on neural networks that showed a precision, recall, and 

F1 score of 0.92, 0.90, and 0.91, respectively; the system is not adaptable in a small-scale or rural grid due to the need for 

training data at large scales [19]. Further development of coordinated demand-response mechanisms in hybrid wind–solar 

distribution networks has lowered voltage fluctuation by 41% while increasing the SAIDI reliability index by 33%, but it 

needs a high participation level from consumers and is, therefore, limited in its scalability [20]. 

 

Under high PV penetration, FFT-based harmonic monitoring kept THD within 3%, but with the trade-off of requiring 

highly expensive sensors [21]. The PQ disturbance detection using CNNs-based machine learning classification achieved 

an accuracy of 97.2%, precision of 0.96, recall of 0.95, F1-score of 0.95, and an AUC of 0.98, but overfitting prevented it 

from generalizing well against unseen disturbance patterns [22]. Improved droop control for reactive power imbalance in 

grid-connected hybrid systems reduced imbalance by 47% and frequency regulation accuracy by 95%, but performs 

degraded with more than 80% renewable penetration [23]. MPC for hybrid microgrids introduced PQ mitigation with THD 

= 2.4% and voltage deviation 

 

Hybrid inverters with integrated APF have reduced THD values to 2.1% and increased system reliability by 28%, though 

operation costs are very high [26]. PNQ management based on reinforcement learning reached 95.4% accuracy while 

properly compensating harmonics but with long training times required for adaptation in real time [27]. Deep learning 

frameworks with LSTM architectures predicted PQ disturbances with accuracies of 96.8%, precision = 0.95, recall = 0.94, 

F1-score = 0.94, and AUC = 0.97 and lacked generalization on small datasets [28]. Monte Carlo simulations of hybrid 

renewable penetration showed an increase in reliability indices up to 15%, but degradation of PQ when penetration level 

of PV was beyond 70%, without validation in the real field [29]. Under multi-objective optimization for PQ enhancement 

and cost reduction, the THD is less than 2.5%, with an 18% reduction in overall cost; the economic model, however, does 

not include long-term maintenance [30]. 

Power management in hybrid renewable systems with diesel generator backup has been studied using a PI-type controller 

that ensured stable operation with minimum frequency deviations and voltage fluctuations, though it could not adapt to 

sudden changes in the load or to renewable variability, making it unsuitable for highly variable environments [31]. While 

comparisons between PI and PD controllers of grid-interfaced hybrid systems have revealed that PI controllers surpassed 

PD controllers in both transient response and steady-state error, under operating conditions where high variability and 

uncertainty pertain to renewable generation, their performance appears degraded [32]. Adaptive fuzzy logic controllers 

(AFLC) for hybrid systems connected to a microgrid enhance the system stability, optimize energy efficiency, and perform 

well under fluctuating loads; however, their practical implementation is hindered by the complexity of tuning fuzzy rules 

and membership functions [33]. 

 

Hybrid Model Predictive Control (MPC) schemes augmented with fuzzy logic have been used to attain an improved 

performance in systems with high renewable penetration; however, in real-time deployment, computational complexity 

would be an overriding consideration [34]. The same holds for adaptive fuzzy logic controllers combined with MPPT for 
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grid-connected PV systems in improving power production and system efficiency, yet scalability of real-time hardware 

limits them [35]. FLC and MPC for PV maximum power point tracking compared indicated that MPC has better tracking 

efficiency and faster dynamic response, but its computation intensity prevents real-time implementation [36]. Fuzzy 

Adaptive Exponent PID (Fuzzy PI-DÆ) controllers for microgrid frequency stability under variable load and renewable 

input enhanced robustness and stability, but the complex controller design and parameter tuning remain major 

drawbacks[37]. And these Adaptive Fuzzy-Recurrent Neural Network tuned Fractional PID controllers for multi-microgrid 

systems have the best technological solution to increasing frequency regulation and system resilience, yet it is data-hungry 

and computationally intense [38]. 

 

Table 2.2: Power Quality Issues in Hybrid Renewable Systems 
Ref Focus Area Technique / Method Results Limitations 

[16] Harmonics & 

voltage imbalance 

MPC-based inverter 

control 

THD reduced to 2.8% vs 5.6% 

baseline 

Simulation only, no 

experimental validation 

[17] Harmonics 

mitigation 

Wavelet transform + 

shunt active power 

filter 

Harmonic reduction 93%, F1-

score = 0.89 

High computational cost; 

not real-time 

[18] Reactive power 

imbalance 

Adaptive STATCOM–

BESS compensation 

96.5% voltage stability 

improvement, 78% reactive 

power imbalance reduction 

Dependent on battery 

lifetime 

[19] Voltage 

fluctuations 

Neural network-based 

detection 

Precision = 0.92, Recall = 0.90, 

F1 = 0.91 

Requires large training 

data; limited rural grid 

applicability 

[20] Voltage 

fluctuation 

Coordinated demand 

response strategy 

Voltage fluctuation reduced by 

41%, SAIDI improved 33% 

Requires high consumer 

participation 

[21] Harmonics FFT-based harmonic 

monitoring 

THD suppressed to <3% High-speed sensor cost 

[22] PQ disturbance 

classification 

CNN-based ML model Accuracy = 97.2%, Precision = 

0.96, Recall = 0.95, F1 = 0.95, 

AUC = 0.98 

Overfitting under unseen 

disturbances 

[23] Reactive power 

imbalance 

Enhanced droop 

control 

47% reduction in imbalance, 

frequency regulation accuracy 

95% 

Struggles under >80% 

renewable penetration 

[24] Voltage & 

harmonics 

MPC-based hybrid 

microgrid control 

THD = 2.4%, voltage deviation 

< 2% 

Computational burden; 

large-scale deployment 

challenging 

[25] Voltage flicker Adaptive Kalman filter 

detection 

Recall = 0.93, F1 = 0.91 Not tested in real-time 

hardware 

[26] PQ enhancement Hybrid inverter + 

active power filter 

THD reduced to 2.1%, reliability 

index +28% 

Higher operational cost 

[27] PQ management Reinforcement 

learning-based control 

Accuracy = 95.4%, improved 

harmonic compensation 

Long training time for real-

time adaptation 

[28] PQ disturbance 

prediction 

LSTM-based 

framework 

Accuracy = 96.8%, Precision = 

0.95, Recall = 0.94, F1 = 0.94, 

AUC = 0.97 

Limited generalization on 

small datasets 

[29] Grid reliability Monte Carlo 

simulations 

Reliability indices increased by 

15%; PQ deteriorated at >70% 

PV penetration 

No real-field data 

validation 

[30] PQ improvement 

& cost 

Multi-objective 

optimization 

THD < 2.5%, cost reduction 

18% 

Long-term maintenance 

costs excluded 
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IV. HYBRID RENEWABLE SYSTEM STUDIES WITH HIGHEST ACCURACY 

 
Figure 4: Comparison of Accuracy in Top Hybrid Renewable System Techniques 

The figure 4 represents various Hybrid Renewable System studies, all of which have been reported to have the highest 

level of accuracy. The x-axis shows techniques employed in various studies (though the chart label shows "0", which can 

be an issue with plotting), while the y-axis shows the various accuracies obtained by those techniques. The red bars indicate 

the accuracy value of each method: 93%, 97.2%, 96.8%, and 92%, respectively. The figure shows that the ML model based 

on CNN [22] was the most accurate (97.2%) and was closely followed by the LSTM-based framework [28] with 96.8%. 

The IoT-based monitoring system [15] had an accuracy of 93% and neural network-based detection [19] and LSTM-based 

demand response prediction [5] both had 92%. These techniques accurately diagnosed power quality, frequency, and 

voltage management problems in hybrid renewable energy systems. 

 

V. CONCLUSION AND FUTURE WORK   

 

In the review work, different methods were discussed to regulate power quality, frequency, and voltage in hybrid renewable 

energy systems, highlighting the effectiveness of machine learning techniques. Among the methods evaluated was the 

CNN-based model, which had a top classification accuracy of 97.2%, followed very closely by the LSTM-based method, 

which had an average accuracy of 96.8%, while IoTs-based monitoring and neural network-based detection recorded 93% 

and 92% in LSTM-based demand response prediction, respectively. This shows that AI-based models can be used much 

more effectively for monitoring hybrid systems, controlling them, and making decisions, thus making their operation more 

reliable and efficient. Building on that, future work can carry out the following: developing hybrid ML models integrating 

CNN, LSTM, and other deep learning methods for widen prediction accuracy and robustness; implementing them in real 

and multi-source systems to assess adaptability under dynamic scenarios; incorporating IoT and edge computing for faster 

response; and investigating optimization strategies of maximum energy efficiency, reliability, and cost-effectiveness of 

hybrid renewable energy networks. 
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